
Software Testing

Dronacharya College of Engineering

1

2

Software Testing

Testing is the process of exercising

a program with the specific intent of

finding errors prior to delivery to the

end user.

3

What Testing Shows

errors

requirements conformance

performance

an indication
of quality

4

V & V

 Verification refers to the set of tasks that ensure

that software correctly implements a specific

function.

 Validation refers to a different set of tasks that

ensure that the software that has been built is

traceable to customer requirements. Boehm

[Boe81] states this another way:

 Verification: "Are we building the product right?"

 Validation: "Are we building the right product?"

5

Who Tests the Software?

developer independent tester

Understands the system

but, will test "gently"

and, is driven by "delivery"

Must learn about the system,

but, will attempt to break it

and, is driven by quality

6

Testing Strategy

System engineering

Analysis modeling

Design modeling

Code generation Unit test

Integration test

Validation test

System test

7

Unit Testing

module
to be

tested

test cases

results

software
engineer

8

Unit Testing

interface

local data structures

boundary conditions

independent paths

error handling paths

module
to be

tested

test cases

9

Unit Test Environment

Module

stub stub

driver

RESULTS

interface

local data structures

boundary conditions

independent paths

error handling paths

test cases

10

Integration Testing Strategies

Options:

• the “big bang” approach

• an incremental construction strategy

11

Top Down Integration

top module is tested with
stubs

stubs are replaced one at
a time, "depth first"

as new modules are integrated,
some subset of tests is re-run

A

B

C

D E

F G

12

Bottom-Up Integration

drivers are replaced one at a
time, "depth first"

worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

13

Sandwich Testing

Top modules are

tested with stubs

Worker modules are grouped into
builds and integrated

A

B

C

D E

F G

cluster

14

High Order Testing
 Validation testing

 Focus is on software requirements

 System testing
 Focus is on system integration

 Alpha/Beta testing
 Focus is on customer usage

 Recovery testing
 forces the software to fail in a variety of ways and verifies that recovery is properly

performed

 Security testing
 verifies that protection mechanisms built into a system will, in fact, protect it from

improper penetration

 Stress testing
 executes a system in a manner that demands resources in abnormal quantity,

frequency, or volume

 Performance Testing
 test the run-time performance of software within the context of an integrated system

15

Debugging: A Diagnostic Process

The Art of Debugging

 Debugging occurs as a consequence of successful testing.
That is, when a test case uncovers an error, debugging is
the process that results in the removal of the error.

Debugging is

not testing

but always

occurs as a

consequence

of testing.

17

The Debugging Process

18

Debugging Effort

time required
to diagnose the
symptom and
determine the
cause

time required
to correct the error
and conduct
regression tests

19

Symptoms & Causes

symptom

cause

symptom and cause may be
geographically separated

 symptom may disappear when
another problem is fixed

 cause may be due to a
combination of non-errors

 cause may be due to a system
or compiler error

 cause may be due to
assumptions that everyone
believes

 symptom may be intermittent

20

Consequences of Bugs

damage

mild
annoying

disturbing

serious

extreme

catastrophic

infectious

Bug Type

Bug Categories: function-related bugs,

system-related bugs, data bugs, coding bugs,
design bugs, documentation bugs, standards
violations, etc.

21

Debugging Techniques

brute force / testing

 backtracking

 induction

 deduction

The Art of Debugging

 Three categories for debugging approaches may be
proposed: (1) brute force, (2) backtracking, and (3) cause
elimination.

 The brute force category of debugging is probably the
most common and least efficient method for isolating the
cause of a software error. We apply brute force debugging
methods when all else fails.

 Using a "let the computer find the error" philosophy,
memory dumps are taken, run-time traces are invoked,
and the program is loaded with WRITE statements. We
hope that somewhere in the morass of information that is
produced we will find a clue that can lead us to the cause
of an error.

The Art of Debugging

 Backtracking is a fairly common debugging approach that
can be used in small programs. Beginning at the site
where a symptom has been uncovered, the source code is
traced backward (manually) until the site of the cause is
found. Unfortunately, as the number of source lines
increases, the number of potential backward paths may
become unmanageably large.

 Cause elimination. Data related to the error occurrence
are organized to isolate potential causes. A "cause
hypothesis" is devised and the aforementioned data are
used to prove or disprove the hypothesis. Alternatively, a
list of all possible causes is developed and tests are
conducted to eliminate each.

24

Correcting the Error

 Simple questions that should be asked before making the

"correction" that removes the cause of a bug:

 Is the cause of the bug reproduced in another part of the program? In

many situations, a program defect is caused by an erroneous pattern of

logic that may be reproduced elsewhere.

 What "next bug" might be introduced by the fix I'm about to make? Before

the correction is made, the source code (or, better, the design) should be

evaluated to assess coupling of logic and data structures.

 What could we have done to prevent this bug in the first place? This

question is the first step toward establishing a statistical software quality

assurance approach. If you correct the process as well as the product,

the bug will be removed from the current program and may be eliminated

from all future programs.

Final Thoughts

 Think -- before you act to correct

 Use tools to gain additional insight

 If you’re at an impasse, get help from someone

else

 Once you correct the bug, use regression

testing to uncover any side effects

